Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses.
نویسندگان
چکیده
Global analyses of splicing of precursor messenger RNAs (pre-mRNAs) have revealed that alternative splicing (AS) is highly pervasive in plants. Despite the widespread occurrence of AS in plants, the mechanisms that control splicing and the roles of splice variants generated from a gene are poorly understood. Studies on plant serine/arginine-rich (SR) proteins, a family of highly conserved proteins, suggest their role in both constitutive splicing and AS of pre-mRNAs. SR proteins have a characteristic domain structure consisting of one or two RNA recognition motifs at the N-terminus and a C-terminal RS domain rich in arginine/serine dipeptides. Plants have many more SR proteins compared to animals including several plant-specific subfamilies. Pre-mRNAs of plant SR proteins are extensively alternatively spliced to increase the transcript complexity by about six-fold. Some of this AS is controlled in a tissue- and development-specific manner. Furthermore, AS of SR pre-mRNAs is altered by various stresses, raising the possibility of rapid reprogramming of the whole transcriptome by external signals through regulation of the splicing of these master regulators of splicing. Most SR splice variants contain a premature termination codon and are degraded by up-frameshift 3 (UPF3)-mediated nonsense-mediated decay (NMD), suggesting a link between NMD and regulation of expression of the functional transcripts of SR proteins. Limited functional studies with plant SRs suggest key roles in growth and development and plant responses to the environment. Here, we discuss the current status of research on plant SRs and some promising approaches to address many unanswered questions about plant SRs.
منابع مشابه
Plant serine/arginine-rich proteins and their role in pre-mRNA splicing.
Pre-messenger RNA (pre-mRNA) splicing, a process by which mature mRNAs are generated by excision of introns and ligation of exons, is an important step in the regulation of gene expression in all eukaryotes. Selection of alternative splice sites in a pre-mRNA generates multiple mRNAs from a single gene that encode structurally and functionally distinct proteins. Alternative splicing of pre-mRNA...
متن کاملThe serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA.
Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteins modulate splicing efficiency and alternative splicing of pre-mRNA in rice, we used transient assays in rice protoplasts by cotransformation of...
متن کاملA plethora of plant serine/arginine-rich proteins: redundancy or evolution of novel gene functions?
Precursor-mRNA (pre-mRNA) processing is an important step in gene expression and its regulation leads to the expansion of the gene product repertoire. SR (serine-arginine)-rich proteins are key players in intron recognition and spliceosome assembly and significantly contribute to the alternative splicing process. Due to several duplication events, at least 19 SR proteins are present in the Arab...
متن کاملNuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein.
Serine/arginine-rich (SR) proteins in non-plant systems are known to play important roles in both constitutive and alternative splicing of pre-messenger RNAs (pre-mRNAs). Recently, we isolated a novel SR protein (SR45), which interacts with U1 snRNP 70K protein, a key protein involved in 5' splice site recognition. SR45 is found only in plants and is unique in having two SR domains separated by...
متن کاملDepletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes
Serine/arginine-rich (SR) proteins are important splicing factors which play significant roles in spliceosome assembly and splicing regulation. However, little is known regarding their biological functions in plants. Here, we analyzed the phenotypes of mutants upon depleting different subfamilies of Arabidopsis SR proteins. We found that loss of the functions of SC35 and SC35-like (SCL) protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wiley interdisciplinary reviews. RNA
دوره 2 6 شماره
صفحات -
تاریخ انتشار 2011